Opposition-based Magnetic Optimization Algorithm with parameter adaptation strategy

نویسندگان

  • Mahdi Aziz
  • Mohammad-Hassan Tayarani-Najaran
چکیده

Magnetic Optimization Algorithm (MOA) has emerged as a promising optimization algorithm that is inspired by the principles of magnetic field theory. In this paper we improve the performance of the algorithm in two aspects. First an Opposition-Based Learning (OBL) approach is proposed for the algorithm which is applied to the movement operator of the algorithm. Second, by learning from the algorithm's past experience, an adaptive parameter control strategy which dynamically sets the parameters of the algorithm during the optimization is proposed. To show the significance of the proposed parameter adaptation strategy, we compare the algorithmwith two well-known parameter setting techniques on a number of benchmark problems. The results indicate that although the proposed algorithm with the adaptation strategy does not require to set the parameters of the algorithm prior to the optimization process, it outperforms MOAwith other parameter setting strategies in most large-scale optimization problems. We also study the algorithm while employing the OBL by comparing it with the original version of MOA. Furthermore, the proposed algorithm is tested and compared with seven traditional population-based algorithms and eight state-of-the-art optimization algorithms. The comparisons demonstrate that the proposed algorithm outperforms the traditional algorithms in most benchmark problems, and its results is comparative to those obtained by the state-of-the-art algorithms. & 2015 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization

 Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...

متن کامل

STATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION

Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimiz...

متن کامل

Solving the Parameter Identification Problem using Shuffled Frog Leaping with Opposition-Based Initialization

The parameter identification problem can be modeled as a non-linear optimization problem. In this problem, some unknown parameters of a mathematical model presented by an ordinary differential equation using some experimental data must be estimated. This paper presents a shuffled frog leaping algorithm for solving parameter identification problem. An opposition-based initialization strategy is ...

متن کامل

Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing

The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...

متن کامل

EMCSO: An Elitist Multi-Objective Cat Swarm Optimization

This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Swarm and Evolutionary Computation

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016